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ABSTRACT

The mean-square deflection of suprathermal test particles
from a weakly unstable electron plasma is calculated. The insta-
bility is assumed to have been driven by a tenuous beam of
energetic electrons. The random phase approximation expression
for the spectral density is used and the electric field energy
density of the turbulent spectrum is estimated by the quasi-linear
theory. Tt is shown that the mean-square scattering angle can be
increased by more than an order of magnitude by a suitable beam
density or drift velocity. This enhances the potential useful-
ness of charged particle scattering as a diagnostic tool for

turbulent laboratory plasmas.




I. INTRODUWCTION

It has recently been proposed that the scattering of energetic
charged particles could provide a probe of the integrated spectrum
of the plasma electric field auto-correlation function.!»® In a
quiescent stable plasma where the scattering is due to the collec-
tive thermal fluctuations in the microscopic electric tield, the
deflection of test electrons may be barely observable for presently
attainable laboratory plasmas.1 It is also pointed out in Reference
2 that, while it is possible to induce enhanced plasma fluctuations
by the introduction of a current, this does not increase the scat-
tering significantly as long as the current is kept within the
limits of linear stability. This paper deals with the possibilities

of scattering from a weakly unstable plasma.

In the paragraphs that follow, the formal expression for the
mean-square deflection of a charged particle beam is set down. It
involves an integration over the spectral density of the turbulent
electric field, samething which is not provided in closed form by
any existing theory. An expression valid for the weakly unstable
"bump-on-the-tail” situation has been derived by the quasi-linear
theory* for the one-dimensional case. A three-dimensional version

of the quasi-linear theory has been given,5 but apparently does




not lead to an expression for the spectral density without consid-
erable numerical work. Even then, it may not be time-independent
for the initial-value problem considered. It is eésential for the
present calculation that we have a simple estimate for the three-
dimensional spectral density. We therefore make a (necessarily
rough) estimate for it, using the one-dimensional, quasi-linear
theory as a guide. This estimate represents the only significant

uncertainty in the calculation.




II. CALCULATION OF THE MEAN-SQUARE DEFLECTION

As shown in Reference 1, the mean-square deflection for a
test particle of velocity VO, charge-to-mass ratio q/m, which

traverses a length L of spatially uniform plasma, is
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In an unstable situation where the electrostatic field has
a turbulent spectrum which does not vary appreciably in a time

L/VO, we may show that,3 within the random phase approximation,
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Here, 8£(E) is the electrostatic field energy per unit volume per
unit wave number for waves of type g. For example, ¢ might label
electron plasma oscillations or ion acoustic waves. u%(ﬁ) is
the oscillation frequency for the gth type of wave. We shall

assume that the Ez(K) are time-independent over the times of interest.
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We shall consider the turbulent spectrum to have grown out
of an electron plasma with a tenuous flux of energetic electrons,

with a uniform, positive background:
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with the drift velocity Vg =V d(cos y, 0, sin y) in Cartesian

coordinates, |* ¥ 1, 1 - [ «< 1, and Vd > Ve’ the electron thermal
speed. The analytical treatments of this "bump-on-the-tail"

situation have usually been concerned with the initial value

problem, though any actual experiments would almost certainly be

better approximated by the boundary value problem.

We shall assume the parameters (3, Ve’ and Vd to have been
chosen so that the assumptions of the quasi-linear theory are
fulfilled~-i.e., that the initial growth rates, I, associated
with Equation (3) satisfy T(E) << o(K), where (k) is the corres-
ponding oscillation frequency. For Vd only slightly exceeding
the critical velocity for instability, the unstable region in

E?sPace will be small, as shown in Figure 1, and will be centered

about the directions K = + Vd' For Vd2 >> Ve2, we will also have




that oK) = & g the electron plasma trequency, for all k's.
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where K = k(cos ¢, sin ¢ cos g, 8in 6 sin ¢), and
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where we have approximated cos 6 cos y by virtue of the narrow

angular width subtended by the region of unstable K. The extra

factor of 2 takes into account the second unstable region for

which € = 17 - y, and which contributes symmetrically. The inte-

gration in Equation (4) is over the region of initial positive T.
We now rotate the axes about the ky-axis,.such that the

k -axis lies along Vd' In the new set of coordinates, €(k) =

€(X, cos ) only. This enables us to do the ¢ and k integrations

in Equation (4) trivially. Furthermore, we now assume that

e(w /VO cos y, cos §) falls off parabolically, with a maximum at
p

g =0, i.e.,

—ﬁ— R 1), (5)




where X = cosg -1 and Xiax is the maximum value of (cosg _1)b
under which the waves are unstable for k = wp/VO cos y. Cos ©
is determined from the equation of the boundary of the unstable
region, T(k. cos @) = O, which is
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Finally, we have that
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The steady state value of €£(K) as obtained by the one-
dimensional, initial-value, quasi-linear theory has been shown
to be approximately valid in the three-dimensional case, provided

it is interpreted as the maximum excitation of the fluctuating




field which occurs at a finite time.® We may therefore use the
one-dimensional, quasi-linear treatment to estimate an upper bound
for <(A9)2>,

The asymptotic electrostatic field spectrum in the one-

. . s qa .4
dimensional quasi-linear theory is:
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where u = mp/k and F(u, =) is a constant determined by
v
_ 1 ’
F(u, m)(V5 - vl) = I f(u’, o) dau’ . (9)
v
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The various quantities are defined in the caption of Figure O.
Equation (8) is approximated by expanding F(u, o) in a
Taylor's series about A for vy = wp/k < v,; about C for v, =
wp/k < v3; about E for V), < ub/k < v5. This procedure gives
to the lowest order:
2
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Combining Egquations (3), (4), (7), and the three-dimensional
generalization of Equation (10), the resulting expression for

the upper bound of the mean-square deflection is
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corresponding to the inequalities in Equation (11) with u = v

= cos vy
and
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k, is the electron Debye wave number, k = kT/e”, and ((Ae)“)th is
the mean scattering deflection due to scattering by the thermal
equilibrium fluctuations® given by
e 16 e L e
2 _1l6bm g Le n (9=
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The normalized deflection @ given by Equation (1.) corres-
ponds to the largest scattering angle that will be attained in a
continuous stream of test particles due to the additional scatter-

ing by the turbulent fluctuating fields resulting fram the

instability.




III. NUMERICAL RESULTS

The normalized deflection ®p is evaluated according to
recipe provided by Equation (1°) for a typical laboratory plasma
with ln(ko/ke) ¥ 10 and assuming test electrons.

The variation of @2 vs. test particle velocity and angle
of' incidence for different values of dritt velocity Vd and rela-
tive beam density (1 - {3), all chosen within the limits of validity
of the quasi-linear theory, are shown in Figures 3, 4, and 5.

Tor the case in which V4 = 5V, and (1 -1) =4 x lO-u. where the
maximm injtial value of F(O)/wp is .0006, suggesting very weak
instability, we see in Figure 5 that the additional scattering
due to the turbulent fluctuations is very slight. For example,
ifn= lOlO, VO/Ve = 10 corresponds to a test particle energy of
about 60 ev and the thermal scattering angle is about 0.5°. The
first peak in Figure 3 is equivalent to angular deflection of
0.5° so that the total deflection increases by only about & tactor
of two. It is interesting to note that for the case of an ion
sound wave instability the increase in the angular scattering, as
the instability boundary is approached, is also about a factor

- 2 .
of two.?® Because of the factor vy 4 in ((A8)7), the scattering

angle actually decreases as VO is increased. The peaks for
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VO/Ve = 20 and for VO/Ve = 50 in Figure % corresponds to deflection

"o

angles of 0.2° and .06°, respectively.

Figure 4 illustrates the case Vd = SVO and (1 - (8) = 4 X 10—7

for which I'/w = .02. We note that the normalized deflection is
p
increased by more than two orders of magnitude campared with the
previous case. For the same example used above, the peaks for
[ = — P? o A Gy Py o ~O
vo/ve = 10, VO/Ve = 20, and \/O/ve = 50 correspond to 17", 59, !
deflection angles, respectively. The increase over the thermal

value is more than an order of magnitude.

When the drift velocity is raised to 10 Ve, keeping the

e

relative beam density at 4 x lO_u, (r‘/u;.p .0%) results in an
even larger increase @B as shown in Figure 5. The peaks for
VO/Ve = 20 and VO/Ve = 50 curves correspond to deflection angles
of 25° and 9°, respectively. For such large deflections, one
may assume the expression in Equation (1) becames inaccurate,
since it has been derived assuming the deflections to be small.
The order of magnitude increase in the scattering angle
is, of course, not entirely unexpected since even in the quasi-
linear limit the energy of turbulent fluctuations is much greater
than the energy of thermal equilibrium fluctuations.® In all

the cases considered, the peak in @2 moves toward 90° as VO

increases. This peaking can be explained physically as follows.
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The particles that suffer the largest detlections are those that

pe’
Since there is only a small spread in the wave phase velocities

move in phase with the waves which require that k VO Cos ¥ = W

if VO is increased, cos y must be decreased. TFor infinite Vo’

7y is exactly 90°.
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Iv. DISCUSSION AND SUMMARY

These calculations have shown that the deflection of test
particles in an electron plasma with a bump-on-tail distribution
may be very much larger than in the case of thermal equilibrium.
This can be accomplished by either increasing the density of the
beam of the energetic electrons or by raising its dritt velocity.
A significant improvement in the utility of this experimental
technique can therefore be expected for weakly unstable plasmus.
For example, energetic electrons used as test particles in
plasmas with realistic dimensions will still exhibit measurable
deflections, while at the same time be easily distinguishable from
the plasma particles. The calculations also show that there is
the usual shift in the peaks of the deflections toward y = 90°
as VO is increased. This very interesting feature has been pre-
dicted in the case of a stable current-carrying plasma® and could
well be a common characteristic of scattering experiments in
plasmas which support same kind of oscillations.

To the extent at which the assumptions of this calculation
are satisfied, a measurement of deflections of test particles may
alsc be construed as a possible experimental test of the quasi-

linear theory.
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We may finally conclude that if the measured scattering
is drastically enhanced over the stable equilibrium value, the
plasma is linearly unstable and is experiencing some sort of

turbulent oscillations.
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FIGURE CAPTIONS

The unstable regions of K space. The shaded volumes
are those which contribute to the mean-square scattering
integral. The drift velocity Va lies in the kX kz plane
and makes an angle y with the test particle velocity'Vo.
As Vd approaches its critical value for instability

from above, the shaded volume shrinks to zero.

The one-dimensional velocity distribution and spectral

density (as a function of u = wp/k) for the asymptotic

one-dimensional, quasi-linear final state. The initial
distribution is shown by a dotted line and the areas

enclosed by ABC and CDE are equal.

The normalized mean-square deflection vs. angle of
incident y for the case of very weak instability with
Vy = 5V, and (L -p) =4 x 10'”, r(o)/u-p + .0000.

The normalized mean-square deflection vs. angle of
incidence for (L - (1) = b x 1077, V= 5V, r©)/u,

~

= .02.

The normalized mean-square deflection vs. angle of

incidence for (1 - 3) = 4 x lO-h, vy = 10V,

~

F(o)/wp = .03.
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ERRATA

"The Scattering of Charged Particles in a Weakly Unstable Plasma,”
by Celso Roque (U. of Iowa 68-1L4)

(1) Page 7, Equation (5):

w
Replace 6(———-9—— s X) on the left hand side by
Vo cos vy

&(

Voc03y’X+l)

(2) Page 9, Second line before Equation (10):

Replace v3 by Vh .



